
Théorie de l'information et codage

Master de cryptographie

Cours 11 : Logarithme discret

27 et 30 mars 2009

Université Rennes 1

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 1 / 23



The discrete logarithm

De�nition

Let G be a (multiplicative) group. Let g an element of G of �nite order l
(ie g l = 1). Let H =

(
g1, g2, · · · , g l

)
the subgroup of G generated by g

∀h ∈ H, ∃n ∈ [1, · · · , l ] such that h = gn

n is said to be the discrete logarithm of h in base g and is denoted logg (h).
n est determined modulo l

Examples :

(Z/nZ,+)

The multiplicative group of a �nite �eld : F∗q
An elliptic curve

The Jacobian of an hyperellitic curve

Goal : �nd a group where �nding the discrete logarithm is di�cult and use
it in cryptography

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 2 / 23



Di�e-Hellman key exchange

Public parameters : a group G , an element g in G of order l

A picks a random number a in [1, l − 1]

A computes ga in G and sends it to B

B picks a random number b in [1, l − 1]

B computes gb in G and sends it to A

B gets ga and computes gab = (ga)b

A gets gb and computes gab =
(
gb
)a

A and B share a common secret key gab.

An eavesdropper knows g and intercepts ga, gb but cannot deduce gab

without solving a discrete logarithm problem

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 3 / 23



El-Gamal encryption

Public parameters : a group G , an element g in G of order l

A chooses a random number ka in [1, l − 1] (her private key)

A computes Ka = gka in G (her public key) and distributes it

B wants to send a message m to (we assume that m ∈ G )

B picks a random number k in [1, l − 1]
B sends

(
gk ,mK k

a

)
to A

A then receives
(
gk ,mK k

a

)
and can recover m because

m =
mK k

a(
gk
)ka

In fact it is just a Di�e-Hellman but k is a session private key for B

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 4 / 23



Underlying problems to discrete logarithm security

DLP (Discrete Logarithm Problem)
Given g and ga, recover a

CDH (Computational Di�e-Hellman)
Given g , ga and gb, recover gab

DDH (Decisional Di�e Hellman)
Given g , ga, gb and g c , decide if gab = g c

DLP > CDH > DDH

CDH is su�cient to break key-exchange or El-Gamal

DDH is su�cient to weaken El-Gamal (eg if we suspect a message m, we
can verify if we are right if DDH is easy)

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 5 / 23



Computing the discrete logarithm

De�nition

An algorithm to compute the discrete log is said to be generic if it uses
only the following operations

the composition of two groups elements

the inverse of an element

the equality test

In other words, it can be used on any group

Theorem (Shoup)

Let p be the largest prime number dividing the order l of the element g .
Computing a discrete logarithm using a generic algorithm requires at least
O(
√
p) operations in the group

Brute force

Compute gk for all k < l and check if it is equal to h→ O(l) operations
Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 6 / 23



Polhig-Hellman (from l to p)

We assume, to simplify, that the order l of g equals pq
Given h ∈

(
g1, g2, · · · , g l

)
, we want n such that h = gn.

Let us write n = np + kp, so we have : h = gnp+kp

hq = gq(np+kp)

hq = gqnpgkl

hq = gqnp

Putting g ′ = gq and h′ = hq, np is the discrete logarithm of h′ in base g ′

and, by construction, g ′ is an element of order p
Compute n mod q in the same way and recover n from n mod p and n

mod q thanks to the CRT

This method can of course be generalized to any l

Conclusion : The complexity of the discrete logarithm problem in a group
of size l does not depend on l but on the largest prime dividing l

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 7 / 23



Baby step, Giant step (Shanks)

Reminder : Given h ∈
(
g1, g2, · · · , g l

)
, we want n such that h = gn

Let s =
[√

l
]

+ 1, there are u < s and v < s such that n = u + vs. Then

we have

h = gu+vs

h = gu (g s)v

h
(
g−1

)u
= (g s)v

Algorithm

1. Baby step : Compute and store h
(
g−1

)u
in G for 0 ≤ u < s

2. Giant step : For v from 0 to s do

. compute (g s)v in G

. if (g s)v = h
(
g−1

)u
for a certain u then return u + vs

Complexity : 2
√
l operations in G (optimal)

Drawback : necessary to store
√
l elements of G

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 8 / 23



Baby step, giant step : an example

G = F∗p with p = 83, ==// G = 82 = 2×41. We choose g = 3 (order 41)
We want to compute log3(30). We take s = 7.

Precomputations 3−1 = 28 mod 83 and 37 = 29 mod 83

Baby step : Compute all the
30
(
3−1
)u

modulo 83 for 0 ≤ u < s

Giant step : For v from 0 to s−1
compute

(
37
)v

modulo 83
u=0 30 v=0 1
u=1 10 v=1 29
u=2 31 v=2 11
u=3 38 v=3 70
u=4 68 v=4 38
u=5 78
u=6 26

Then n = 3 + 4×7 = 31.

In 10 steps instead of 31 (brute force)
Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 9 / 23



Baby step, giant step : a real example

On a group of size around 280 (security level of 40 bits)

Computation time

On a recent PC, an operation on such a group takes around 10µs
240 operations → ∼ 4 months

Realizable

In term of memory usage

80 bits = 10 bytes → 20 bytes to store an element of G

20×240 =20 000 GB approximately

and it must be RAM

The limiting factor is the memory

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 10 / 23



Baby step, giant step : a real example

On a group of size around 280 (security level of 40 bits)

Computation time

On a recent PC, an operation on such a group takes around 10µs
240 operations → ∼ 4 months

Realizable

In term of memory usage

80 bits = 10 bytes → 20 bytes to store an element of G

20×240 =20 000 GB approximately

and it must be RAM

The limiting factor is the memory

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 10 / 23



Pollard ρ

Birthday paradox : If elements of G are randomly picked, the number of
draws before a collision (the last element picked was already picked before)

is around
√

πl
2
.

Principle : Realize a random walk wi+1 = φ(wi ) until a collision happens

τ ∼ µ ∼
√

πl
8

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 11 / 23



Pollard ρ

A trick to avoid storage :

If i = kτ and i ≥ µ, then wi = w2i

We just look for a collision, don't want to compute τ and µ.

Algorithm (Pollard, Floyd)

1. initialization w0, z0 = w0

2. Compute wi+1 = φ(wi ) and zi+1 = φ(φ(zi ))

3. If wi+1 = zi+1 then return i and 2i , else i = i + 1 and repeat

Advantage : No storage and always in
√
l

Drawback : Compute 3 times φ. There are improvements (balance between
computation cost and frequencies of collision).

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 12 / 23



Application to discrete logarithm

wi = gaihbi

wi = wj ⇒ gaihbi = gajhbj

hbi−bj = gaj−ai

h = g

aj−ai
bi−bj

so n =
aj − ai

bi − bj
mod l

Easy to parallelize. A 109 bits elliptic curve discrete logarithm (55 bits
security) was broken in 2002 using this algorithm with 10000 PC running
during 549 days
Next challenge : 131 bits (20 000 $)
Available on http ://www.certicom.com/

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 13 / 23



Example of random walk for the discrete logarithm
(wi = g aihbi )

We split G in 3 subset of approximately the same size

G = G1 ∪ G2 ∪ G3

w0 = g (a0 = 1, b0 = 0)

wi+1 = φ(wi ) =


hwi si wi ∈ G1

w2
i si wi ∈ G2

gwi si wi ∈ G3

So

(ai+1, bi+1) =


(ai , bi + 1) si wi ∈ G1

(2ai , 2bi ) si wi ∈ G2

(ai + 1, bi ) si wi ∈ G3

In fact, not random enough and the collision happens later than expected

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 14 / 23



Summary of the constraints on G

G must contain a subgroup of prime order p where the discrete log
problem will be applied

If we want a n bits security level, p must have 2n bits (because of
generic attacks)

The goal is to �nd groups such that there are no better attacks than
generic ones

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 15 / 23



A candidate for G : F∗p

p prime, Fp �nite �eld
The set of non-zero elements in Fp is a (multiplicative) group of order
p − 1 → natural candidate for G

Index calculus algorithm can compute the discrete logarithm in such a
group in subexponential time

Security level of 80 bits → p ∼ 21024

Same security as RSA

In practice, we chose p a 1024 bits prime number such that p − 1 is
divisible by a 160 bits prime number l . In this case, the operations take
place in F∗p but the keys (the exponents) are in Z/lZ.

Smaller keys than RSA (160 bits instead of 1024).

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 16 / 23



Di�e-Hellman key-exchange on F∗p for 80 bits security

We chose l a 160 bits prime number and p a 1024 bits prime number such
that p − 1 = kl . Let g be an element in F∗p of order l . Public parameters
are l , p and g .

A picks a random number a in [1, l − 1]

A computes ga modulo p and sends it to B

B picks a random number b in [1, l − 1]

B computes gb modulo p and sends it to A

B gets ga and computes gab = (ga)b modulo p

A gets gb and computes gab =
(
gb
)a

modulo p

A and B share the common secret key gab

The standard procedure to generate l , p and g is given by the NIST
http ://csrc.nist.gov/publications/�ps/�ps186-2/�ps186-2-change1.pdf

for instance l = 2160 + 7

p = 1 +
(
2160 + 7

) (
2864 + 218

)
∼ 21024

g = 2
p−1
l mod p

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 17 / 23



Other candidates

Other �nite �elds. In particular those of the form F2n . Index calculus
works in the same way : 1024 bits are necessary for 80 bits of security

Elliptic curves and genus 2 (hyperelliptic) curves for which nobody
knows better attacks than generic ones : 160 bits are su�cient for 80
bits of security

Curves of larger genus but the Index calculus algorithm can be adapted

Advantages and Drawbacks compared to RSA

Smaller key size

Faster decryption (eg 160 bits exponent instead of 1024)

Slower encryption (if small e is used in RSA)

Trivial key generation

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 18 / 23



Principle of Index calculus (Western-Miller, Kraitchik)

We assume, to simplify, that ==// G = l (ie all elements of G are a power of
g). We want to compute the discrete log of h

1. Construct a "factor basis" made of some particular elements of G ,
(gi )i=1..c . By de�nition, we have gi = g logg (gi )

2. Find relations between these elements of the form

gαghαh = gα11 gα22 · · · g
αc
c

This give relations of the form

gαg g logg (h)αh = g logg (g1)α1g logg (g2)α2 · · · g logg (gc)αc

and then

αg = − logg (h)αh + logg (g1)α1 + logg (g2)α2 + · · ·+ logg (gc)αc

which is a linear equation between logg (h) and the logg (gi ).

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 19 / 23



Principle of Index calculus (Western-Miller, Kraitchik)

3. When you have c + 1 independent relations of this form, solve the
system (standard linear algebra) assuming that logg (h) and the
logg (gi ) are the unknowns. The solution then gives logg (h)

For e�ciency, must �nd a balance between step 2 and step 3 (which are
contradictory)
This algorithm is generic but is e�cient only if a good factor basis can be
used

on F∗p, we choose the small prime numbers

on F∗2n , we choose the polynomials of small degrees

on large genus curves, we choose elements of small degrees

Master Crypto (2008-2009) Théorie de l'information et codage 27 et 30 mars 2009 20 / 23


