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The discrete logarithm

Let G be a (multiplicative) group. Let g an element of G of finite order /
(ieg =1). Let H= (gt.8% ,g’) the subgroup of G generated by g

Vhe H,an e [1,--- /] such that h=g"

n is said to be the discrete logarithm of h in base g and is denoted log,(h).
n est determined modulo /

v

Examples :

(Z/nZ,+)

The multiplicative group of a finite field : Fy
An elliptic curve

The Jacobian of an hyperellitic curve

Goal : find a group where finding the discrete logarithm is difficult and use
it in cryptography
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Diffie-Hellman key exchange

Public parameters : a group G, an element g in G of order /

A picks a random number a in [1,/ — 1]
A computes g? in G and sends it to B
B picks a random number b in [1,/ — 1]

o

o

o

@ B computes g? in G and sends it to A
o B gets g2 and computes g% = (g"”)b

o A gets g? and computes g% = (g?)°
o

A and B share a common secret key g2.

An eavesdropper knows g and intercepts g2, g? but cannot deduce g?°
without solving a discrete logarithm problem

Master Crypto (2008-2009) Théorie de I'information et codage 27 et 30 mars 2009 3/23



El-Gamal encryption

Public parameters : a group G, an element g in G of order /

A chooses a random number k;, in [1,/ — 1] (her private key)

A computes K, = gk in G (her public key) and distributes it

B wants to send a message m to (we assume that m € G)

B picks a random number k in [1,/ — 1]
B sends (g, mKY) to A

o A then receives (gk, mK¥) and can recover m because
mKk
ka
(")

In fact it is just a Diffie-Hellman but k is a session private key for B
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Underlying problems to discrete logarithm security

@ DLP (Discrete Logarithm Problem)
Given g and g?, recover a

o CDH (Computational Diffie-Hellman)
Given g, g2 and g?, recover gt
e DDH (Decisional Diffie Hellman)
Given g, g2, g? and g€, decide if g?° = g°¢
DLP > CDH > DDH

CDH is sufficient to break key-exchange or El-Gamal

DDH is sufficient to weaken El-Gamal (eg if we suspect a message m, we
can verify if we are right if DDH is easy)

Master Crypto (2008-2009) Théorie de I'information et codage 27 et 30 mars 2009 5 /23



Computing the discrete logarithm

Definition

An algorithm to compute the discrete log is said to be generic if it uses
only the following operations

@ the composition of two groups elements
@ the inverse of an element
o the equality test

In other words, it can be used on any group

Theorem (Shoup)
Let p be the largest prime number dividing the order / of the element g.
Computing a discrete logarithm using a generic algorithm requires at least
O(,/p) operations in the group

A\

Brute force
Compute g¥ for all k < | and check if it is equal to h — O(/) operations
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Polhig-Hellman (from / to p)

We assume, to simplify, that the order / of g equals pg

Given h € (g',g2,--- ,g'), we want n such that h = g".

Let us write n = np, + kp, so we have: h = g”P+kP
he = gq(np+kp)
he — gqnpgkl
e = g

Putting g’ = g9 and A’ = h9, n, is the discrete logarithm of A" in base g’
and, by construction, g’ is an element of order p

Compute n mod ¢ in the same way and recover n from n mod p and n
mod g thanks to the CRT

This method can of course be generalized to any /

Conclusion : The complexity of the discrete logarithm problem in a group
of size | does not depend on / but on the largest prime dividing /
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Baby step, Giant step (Shanks)

Reminder : Given h € (gl,g2, e ,g’), we want n such that h = g”

Let s = [\fl} 41, there are u < s and v < s such that n = v + vs. Then
we have

u+vs

0q Oy

hig™)" = (&)

Algorithm

1. Baby step : Compute and store h (g_l)u inGfor0<u<s
2. Giant step : For v from 0 to s do

. compute (g%)" in G

. if (g%)" = h(g™*)" for a certain u then return u + vs

Complexity : 2v// operations in G (optimal)

Drawback : necessary to store v// elements of G
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Baby step, giant step : an example

G =, with p =83, # G = 82 = 2x41. We choose g = 3 (order 41)
We want to compute log;(30). We take s = 7.

Precomputations 37! = 28 mod 83 and 37 = 29 mod 83

Baby step : Compute all the Giant step : For v from Q0 tos—1
30 (3_1)u modulo 83for0 < u <'s compute (37)V modulo 83

u=0 30 v=0 1

u=1 10 v=1 29

u=2 31 v=2 11

u=3 38 v=3 70

u=4 68 v=4 38

u=b 78

u=6 26

Then n =3 4+ 4x7 = 31.

In 10 steps instead of 31 (brute force)
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Baby step, giant step : a real example

On a group of size around 289 (security level of 40 bits)

Computation time

On a recent PC, an operation on such a group takes around 10us
240 operations — ~ 4 months

Realizable
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Baby step, giant step : a real example

On a group of size around 289 (security level of 40 bits)

Computation time

On a recent PC, an operation on such a group takes around 10us
240 operations — ~ 4 months

Realizable

| N\

In term of memory usage
80 bits = 10 bytes — 20 bytes to store an element of G

20x240 =20 000 GB approximately

and it must be RAM

The limiting factor is the memory
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Pollard p

Birthday paradox : If elements of G are randomly picked, the number of

draws before a collision (the last element picked was already picked before)
is around \/”7/.
Principle : Realize a random walk w;;1 = ¢(w;) until a collision happens

| Worra Wit r2
|
\
W, Jt estla prépériode
T estla période
Wy
[l
Wo
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Pollard p

A trick to avoid storage :

If i = k7 and i > p, then w; = wy;

We just look for a collision, don't want to compute 7 and p.

Algorithm (Pollard, Floyd)

1. initialization wy, zg = wg

2. Compute wjt1 = ¢(w;) and zj41 = ¢(P(z;))
3. If wiy1 = ziy1 then return / and 2/, else i = i + 1 and repeat

Advantage : No storage and always in v//
Drawback : Compute 3 times ¢. There are improvements (balance between
computation cost and frequencies of collision).
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Application to discrete logarithm

Wi B ga,- hb,‘

Wi = wp\= g% hPi = gihbi
hb,'*bj Jr gajfa,-

aj—aj

aj — aj
b; — b;
Easy to parallelize. A 109 bits elliptic curve discrete logarithm (55 bits
security) was broken in 2002 using this algorithm with 10000 PC running
during 549 days

Next challenge : 131 bits (20 000 $)

Available on http ://www.certicom.com/

son= mod [
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Example of random walk for the discrete logarithm

(w; = g%h")

We split G in 3 subset of approximately the same size
G=GLUGUGs

wo =8 (aozl,b():O)

hw; si w; € Gy

Wiyl = (ﬁ(W,‘) = Wi2 si w; € G

gw; si wj € Gs
So
(a,-, b; + 1) si-w; € Gy
(a,-+1, b,'+1) = (23,’, 2b,’) si w; € Gy
(a,- +1, b,') si- w; € G

In fact, not random enough and the collision happens later than expected
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Summary of the constraints on G

@ G must contain a subgroup of prime order p where the discrete log
problem will be applied

o If we want a n bits security level, p must have 2n bits (because of
generic attacks)

@ The goal is to find groups such that there are no better attacks than
generic ones
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A candidate for G : IF;;

p prime, F, finite field
The set of non-zero elements in I, is a (multiplicative) group of order
p — 1 — natural candidate for G

Index calculus algorithm can compute the discrete logarithm in such a
group in subexponential time

Security level of 80 bits — p ~ 21024
Same security as RSA

In practice, we chose p a 1024 bits prime number such that p — 1 is
divisible by a 160 bits prime number /. In this case, the operations take
place in F; but the keys (the exponents) are in Z//Z.

Smaller keys than RSA (160 bits instead of 1024).
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Diffie-Hellman key-exchange on T, for 80 bits security

We chose [ a 160 bits prime number and p a 1024 bits prime number such
that p — 1 = kI. Let g be an element in F, of order /. Public parameters
are /, p and g.
A picks a random number a in [1,/ — 1]
A computes g? modulo p and sends it to B
B picks a random number b in [1,/— 1]
B computes g2 modulo p and sends it to A
B gets g? and computes g? = (g?)° modulo p
A gets g? and computes g2 = (gb)a modulo p
@ A and B share the common secret key g2
The standard procedure to generate /, p and g is given by the NIST
http ://csrc.nist.gov/publications/fips/fips186-2/fips186-2-changel.pdf

for instance | = 2199 47
p = 1+ (2'%947) (2% 4 218) ~ 2102

p—1
g = 27 modp
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Other candidates

@ Other finite fields. In particular those of the form Fun. Index calculus
works in the same way : 1024 bits are necessary for 80 bits of security

e Elliptic curves and genus 2 (hyperelliptic) curves for which nobody
knows better attacks than generic ones : 160 bits are sufficient for 80
bits of security

o Curves of larger genus but the Index calculus algorithm can be adapted

Advantages and Drawbacks compared to RSA

@ Smaller key size
o Faster decryption (eg 160 bits exponent instead of 1024)
@ Slower encryption (if small e is used in RSA)

@ Trivial key generation
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Principle of Index calculus (Western-Miller, Kraitchik)

We assume, to simplify, that # G =/ (ie all elements of G are a power of
g). We want to compute the discrete log of h

1. Construct a "factor basis" made of some particular elements of G,
(&i);—1 - By definition, we have g; = g'°8:(87)

2. Find relations between these elements of the form
g h = gi'g;” - 8c*
This give relations of the form
g% glogg(h)ah 2 glogg(gl)al glogg(gz)az v glogg(gc)ac
and then
ag = —logg(h)ap + logg(g1)an + logg(g2)az + - - - + logg(gc) e

which is a linear equation between log,(h) and the log,(g;).
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Principle of Index calculus (Western-Miller, Kraitchik)

3. When you have ¢ + 1 independent relations of this form, solve the
system (standard linear algebra) assuming that log,(h) and the
log,(gi) are the unknowns. The solution then gives log, (h)

For efficiency, must find a balance between step 2 and step 3 (which are

contradictory)
This algorithm is generic but is efficient only if a good factor basis can be

used
@ on F;‘;, we choose the small prime numbers
e on F3,, we choose the polynomials of small degrees

@ on large genus curves, we choose elements of small degrees
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